datetime:2022/04/11 15:07
author:nzb

图像处理

图像模板匹配

模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)

  • res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF),推荐使用包含归一化的

    • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关

    • TM_CCORR:计算相关性,计算出来的值越大,越相关

    • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关

    • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关

    • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关

    • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

    • 公式

  • min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res),最小值,最大值,最小值位置,最大值位置

  • 示例代码

          img = cv2.imread('../img/lena.jpg', 0)
          template = cv2.imread('../img/face.jpg',0)
          h,w = template.shape[:2]
          methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
                      'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
          # 模板匹配
          res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
          # 最小值,最大值,最小值位置,最大值位置
          min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
          # 绘图比较
          for meth in methods:
              img2 = img.copy()
    
              # 匹配方法的真值
              method = eval(meth)   # 不能是字符串
              res = cv2.matchTemplate(img, template, method)
              min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    
              # 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
              if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
                  top_left = min_loc
              else:
                  top_left = max_loc
              bottom_right = (top_left[0] + w, top_left[1] + h)
    
              # 画矩形
              cv2.rectangle(img2, top_left, bottom_right, 255, 2)
    
              plt.subplot(121), plt.imshow(res, cmap='gray')
              plt.xticks([]), plt.yticks([])  # 隐藏坐标轴
              plt.subplot(122), plt.imshow(img2, cmap='gray')
              plt.xticks([]), plt.yticks([])
              plt.suptitle(meth)
              plt.show()
    
    • 展示

      • 模板
  • 匹配多个对象

    • 代码

          img_rgb = cv2.imread('../img/mario.jpg')
          img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
          template = cv2.imread('../img/mario_coin.jpg', 0)
          h, w = template.shape[:2]
      
          res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
          threshold = 0.8
          # 取匹配程度大于%80的坐标
          loc = np.where(res >= threshold)
          # *号表示可选参数
          for pt in zip(*loc[::-1]): 
              bottom_right = (pt[0] + w, pt[1] + h)
              cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
      
          show_img([template, img_rgb])
      

results matching ""

    No results matching ""