datetime:2023/03/23 10:10
author:nzb
线程池 ThreadPoolExecutor
从Python3.2
开始,标准库为我们提供了 concurrent.futures
模块,它提供了 ThreadPoolExecutor
(线程池)和 ProcessPoolExecutor
(进程池)两个类。
相比 threading
等模块,该模块通过 submit
返回的是一个 future
对象,它是一个未来可期的对象,通过它可以获取某一个线程执行的状态或者某一个任务执行的状态及返回值:
- 主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
- 当一个线程完成的时候,主线程能够立即知道。
基础语法
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [4, 5, 2, 3]
# 创建一个最大容纳数量为2的线程池
pool = ThreadPoolExecutor(max_workers=2)
# 通过submit提交执行的函数到线程池中
all_task = [pool.submit(action, i) for i in lists]
# 通过result来获取返回值
result = [i.result() for i in all_task]
print(f"result:{result}")
print("----complete-----")
# 线程池关闭
pool.shutdown()
4
5
2
3
result:[4, 5, 2, 3]
----complete-----
使用上下文管理器
可以通过 with
关键字来管理线程池,当线程池任务完成之后自动关闭线程池。
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [4, 5, 2, 3]
all_task = []
with ThreadPoolExecutor(max_workers=2) as pool:
for second in lists:
all_task.append(pool.submit(action, second))
result = [i.result() for i in all_task]
print(f"result:{result}")
4
5
2
3
result:[4, 5, 2, 3]
等待所有主线程完成
在需要返回值的场景下,主线程需要等到所有子线程返回再进行下一步,阻塞在当前。比如下载图片统一保存,这时就需要在主线程中一直等待,使用wait方法完成。
wait(fs, timeout=None, return_when=ALL_COMPLETED)
wait 接受三个参数:
- fs: 表示需要执行的序列
- timeout: 等待的最大时间,如果超过这个时间即使线程未执行完成也将返回
- return_when:表示wait返回结果的条件,默认为
ALL_COMPLETED
全部执行完成再返回,可选FIRST_COMPLETED
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
lists = [4, 5, 2, 3]
all_task = []
with ThreadPoolExecutor(max_workers=2) as pool:
for second in lists:
all_task.append(pool.submit(action, second))
# 主线程等待所有子线程完成
wait(all_task, return_when=ALL_COMPLETED)
print("----complete-----")
4
5
2
3
----complete-----
等待第一个主线程完成
wait 方法可以设置等待第一个子线程返回就继续执行,表现为主线程在第一个线程返回后便不会阻塞,继续执行下面的操作。
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [4, 5, 2, 3]
all_task = []
with ThreadPoolExecutor(max_workers=2) as pool:
for second in lists:
all_task.append(pool.submit(action, second))
# 主线程等待第一个子线程完成
wait(all_task, return_when=FIRST_COMPLETED)
print("----complete-----")
4
5
2
----complete-----
3
因为result方法是阻塞的,所以流程会在result
这里阻塞直到所有子线程返回,相当于 ALL_COMPLETED
方法。
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [4, 5, 2, 3]
all_task = []
with ThreadPoolExecutor(max_workers=2) as pool:
for second in lists:
all_task.append(pool.submit(action, second))
# 主线程等待第一个子线程完成
wait(all_task, return_when=FIRST_COMPLETED)
print("----first complete-----")
result = [i.result() for i in all_task]
print(f"result:{result}")
print("----complete-----")
4
5
2
----first complete-----
3
result:[4, 5, 2, 3]
----complete-----
返回及时处理
如果不需要等待所有线程全部返回,而是每返回一个子线程就能够处理,那么就可以使用as_completed
获取每一个线程的返回结果。
as_completed()
方法是一个生成器,在没有任务完成的时候,会一直阻塞,除非设置了 timeout
。当有某个任务完成的时候,会 yield
这个任务, 就能执行 for
循环下面的语句,然后继续阻塞住,循环到所有的任务结束。同时,先完成的任务会先返回给主线程。
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [4, 5, 2, 3]
all_task = []
with ThreadPoolExecutor(max_workers=2) as pool:
for second in lists:
all_task.append(pool.submit(action, second))
for future in as_completed(all_task):
print(f"{future.result()} 返回")
print("----complete-----")
4
5
2
4 返回
3
5 返回
2 返回
3 返回
----complete-----
map
map
方法是对序列中每一个元素都执行 action
方法,主要有两个特点:
- 不需要将任务
submit
到线程池 - 返回结果的顺序和元素的顺序相同,即使子线程先返回也不会获取结果
map(fn, *iterables, timeout=None)
- fn: 第一个参数 fn 是需要线程执行的函数;
- iterables:第二个参数接受一个可迭代对象;
- timeout: 第三个参数
timeout
跟wait()
的timeout
一样,但由于map
是返回线程执行的结果,如果timeout
小于线程执行时间会抛异常TimeoutError
。
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED, as_completed
def action(second):
print(second)
time.sleep(second)
return second
lists = [5, 1, 2, 3]
with ThreadPoolExecutor(max_workers=2) as pool:
for result in pool.map(action, lists):
print(f"{result} 返回")
5
1
2
3
5 返回
1 返回
2 返回
3 返回
可以看出返回结果和列表的结果一致,即使第2个元素只需要1s就能返回,也还是等待第一个5s线程返回只有才有结果。
自定义打印PID的线程池
import os
import threading
import time
import sys
import ctypes
from concurrent.futures import ThreadPoolExecutor
SYS_get_tid = 178 # 获取线程PID
libc = ctypes.cdll.LoadLibrary("libc.so.6")
class CustomThreadPoolExecutor(ThreadPoolExecutor):
"""
在 3.7 版更改: 加入 initializer 和*initargs* 参数。
"""
def __init__(self, max_workers=None, thread_name_prefix='',
initializer=None, initargs=()):
if initializer is None:
initializer = self._record_threading_info
if sys.version_info >= (3, 7):
super(CustomThreadPoolExecutor, self).__init__(max_workers=max_workers,
thread_name_prefix=thread_name_prefix,
initializer=initializer, initargs=initargs)
else:
super(CustomThreadPoolExecutor, self).__init__(max_workers=max_workers,
thread_name_prefix=thread_name_prefix)
def submit(self, fn, *args, **kwargs):
self._thread_name_prefix = fn.__name__
super(CustomThreadPoolExecutor, self).submit(fn, *args, **kwargs)
@staticmethod
def _record_threading_info():
"""记录线程信息"""
pid = os.getpid()
ppid = libc.syscall(SYS_get_tid)
if ppid == -1:
# only available on some platforms
# support ubuntu version:
# Linux pasture-10 6.5.0-44-generic #44~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Tue Jun 18 14:36:16 UTC 2 x86_64 x86_64 x86_64 GNU/Linux
ppid = threading.get_native_id()
name = threading.current_thread().name
info = f"func name: {name}, pid: {pid}, ppid: {ppid}"
print(info)
pools = CustomThreadPoolExecutor(max_workers=10)
def test1():
while True:
time.sleep(0.1)
# print("I'm test1!!!")
def test2():
while True:
time.sleep(1)
# print("I'm test2!!!")
if __name__ == '__main__':
pools.submit(test1)
pools.submit(test2)