datetime:2019/5/15 17:46
author:nzb

数据结构和算法

数据结构运行流程利器pythontutor

  • 十大经典算法

  • 算法:解决问题的方法和步骤

  • 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。

  • 渐近时间复杂度的大O标记:

    • - 常量时间复杂度 - 布隆过滤器 / 哈希存储
    • - 对数时间复杂度 - 折半查找(二分查找)
    • - 线性时间复杂度 - 顺序查找 / 桶排序
    • - 对数线性时间复杂度 - 高级排序算法(归并排序、快速排序)
    • - 平方时间复杂度 - 简单排序算法(选择排序、插入排序、冒泡排序)
    • - 立方时间复杂度 - Floyd算法 / 矩阵乘法运算
    • - 几何级数时间复杂度 - 汉诺塔
    • - 阶乘时间复杂度 - 旅行经销商问题 - NP

  • 排序算法(选择、冒泡和归并)和查找算法(顺序和折半)

  def select_sort(origin_items, comp=lambda x, y: x < y):
    """简单选择排序"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        min_index = i
        for j in range(i + 1, len(items)):
            if comp(items[j], items[min_index]):
                min_index = j
        items[i], items[min_index] = items[min_index], items[i]
    return items
  # 第一种
def bubble_sort(origin_items, comp=lambda x, y: x > y):
    """高质量冒泡排序(搅拌排序)"""
    items = origin_items[:]
    for i in range(len(items) - 1):
        swapped = False
        for j in range(i, len(items) - 1 - i):
            if comp(items[j], items[j + 1]):
                items[j], items[j + 1] = items[j + 1], items[j]
                swapped = True
        if swapped:
            swapped = False
            for j in range(len(items) - 2 - i, i, -1):
                if comp(items[j - 1], items[j]):
                    items[j], items[j - 1] = items[j - 1], items[j]
                    swapped = True
        if not swapped:
            break
    return items


# 第二种
def bubble_sort(origin_items, comp=lambda x, y: x > y):
    """高质量冒泡排序(搅拌排序)"""
    items = origin_items[:]
    for i in range(1, len(items)):  # 循环次数
        for j in range(0, len(items) - i):  # 循环索引
            if comp(items[j], items[j + 1]):
                items[j], items[j + 1] = items[j + 1], items[j]
    return items
  # 第一种
def merge_sort(items, comp=lambda x, y: x <= y):
    """归并排序(分治法)"""
    if len(items) < 2:
        return items[:]
    mid = len(items) // 2
    left = merge_sort(items[:mid], comp)
    right = merge_sort(items[mid:], comp)
    return merge(left, right, comp)


def merge(items1, items2, comp):
    """合并(将两个有序的列表合并成一个有序的列表)"""
    items = []
    index, index2 = 0, 0
    while index1 < len(items1) and index2 < len(items2):
        if comp(items1[index1], items2[index2]):
            items.append(items1[index1])
            index1 += 1
        else:
            items.append(items2[index2])
            index2 += 1
    items += items1[index1:]
    items += items2[index2:]
    return items


# 第二种
def mergeSort(arr):
    if len(arr) < 2:
        return arr
    middle = len(arr) // 2
    left, right = arr[:middle], arr[middle:]
    return merge(mergeSort(left), mergeSort(right))


def merge(left, right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0))
    result += left[:]
    result += right[:]
    return result
  def quick_sort(self, li):
    # 快速排序 通过
    if len(li) < 2:
        return li
    else:
        tmp = li[0]
        less = [i for i in li[1:] if i <= tmp]
        more = [i for i in li[1:] if i > tmp]
        return self.quick_sort(less) + [tmp] + self.quick_sort(more)
  def seq_search(items, key):
    """顺序查找"""
    for index, item in enumerate(items):
        if item == key:
            return index
    return -1
  def bin_search(items, key):
    """折半查找"""
    start, end = 0, len(items) - 1
    while start <= end:
        mid = (start + end) // 2
        if key > items[mid]:
            start = mid + 1
        elif key < items[mid]:
            end = mid - 1
        else:
            return mid
    return -1
  • 使用生成式(推导式)语法
  prices = {
    'AAPL': 191.88,
    'GOOG': 1186.96,
    'IBM': 149.24,
    'ORCL': 48.44,
    'ACN': 166.89,
    'FB': 208.09,
    'SYMC': 21.29
}
# 用股票价格大于100元的股票构造一个新的字典
prices2 = {key: value for key, value in prices.items() if value > 100}
print(prices2)

说明:生成式(推导式)可以用来生成列表、集合和字典。

  • 嵌套的列表
  names = ['关羽', '张飞', '赵云', '马超', '黄忠']
courses = ['语文', '数学', '英语']
# 录入五个学生三门课程的成绩
# 错误 - 参考http://pythontutor.com/visualize.html#mode=edit
# scores = [[None] * len(courses)] * len(names)
scores = [[None] * len(courses) for _ in range(len(names))]
for row, name in enumerate(names):
    for col, course in enumerate(courses):
        scores[row][col] = float(input(f'请输入{name}的{course}成绩: '))
        print(scores)

Python Tutor - VISUALIZE CODE AND GET LIVE HELP

  • heapq、itertools等的用法
  """
  从列表中找出最大的或最小的N个元素
  堆结构(大根堆/小根堆)
  """
import heapq

list1 = [34, 25, 12, 99, 87, 63, 58, 78, 88, 92]
list2 = [
    {'name': 'IBM', 'shares': 100, 'price': 91.1},
    {'name': 'AAPL', 'shares': 50, 'price': 543.22},
    {'name': 'FB', 'shares': 200, 'price': 21.09},
    {'name': 'HPQ', 'shares': 35, 'price': 31.75},
    {'name': 'YHOO', 'shares': 45, 'price': 16.35},
    {'name': 'ACME', 'shares': 75, 'price': 115.65}
]
print(heapq.nlargest(3, list1))
print(heapq.nsmallest(3, list1))
print(heapq.nlargest(2, list2, key=lambda x: x['price']))
print(heapq.nlargest(2, list2, key=lambda x: x['shares']))
  """
  迭代工具 - 排列 / 组合 / 笛卡尔积
  """
import itertools

itertools.permutations('ABCD')
itertools.combinations('ABCDE', 3)
itertools.product('ABCD', '123')
  • collections模块下的工具类
  """
  找出序列中出现次数最多的元素
  """
from collections import Counter

words = [
    'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
    'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around',
    'the', 'eyes', "don't", 'look', 'around', 'the', 'eyes',
    'look', 'into', 'my', 'eyes', "you're", 'under'
]
counter = Counter(words)
print(counter.most_common(3))
  • 常用算法:

    • 穷举法 - 又称为暴力破解法,对所有的可能性进行验证,直到找到正确答案。
    • 贪婪法 - 在对问题求解时,总是做出在当前看来是最好的选择,不追求最优解,快速找到满意解。
    • 分治法 - 把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题,直到可以直接求解的程度,最后将子问题的解进行合并得到原问题的解。
    • 回溯法 - 回溯法又称为试探法,按选优条件向前搜索,当搜索到某一步发现原先选择并不优或达不到目标时,就退回一步重新选择。
    • 动态规划 - 基本思想也是将待求解问题分解成若干个子问题,先求解并保存这些子问题的解,避免产生大量的重复运算。

    穷举法例子:百钱百鸡和五人分鱼。

  # 公鸡5元一只 母鸡3元一只 小鸡1元三只
# 用100元买100只鸡 问公鸡/母鸡/小鸡各多少只
for x in range(20):
    for y in range(33):
        z = 100 - x - y
        if 5 * x + 3 * y + z // 3 == 100 and z % 3 == 0:
            print(x, y, z)

# A、B、C、D、E五人在某天夜里合伙捕鱼 最后疲惫不堪各自睡觉
# 第二天A第一个醒来 他将鱼分为5份 扔掉多余的1条 拿走自己的一份
# B第二个醒来 也将鱼分为5份 扔掉多余的1条 拿走自己的一份
# 然后C、D、E依次醒来也按同样的方式分鱼 问他们至少捕了多少条鱼
fish = 1
while True:
    total = fish
    enough = True
    for _ in range(5):
        if (total - 1) % 5 == 0:
            total = (total - 1) // 5 * 4
        else:
            enough = False
            break
    if enough:
        print(fish)
        break
    fish += 1

贪婪法例子:假设小偷有一个背包,最多能装20公斤赃物,他闯入一户人家,发现如下表所示的物品。很显然,他不能把所有物品都装进背包,所以必须确定拿走哪些物品,留下哪些物品。

名称 价格(美元) 重量(kg)
电脑 200 20
收音机 20 4
175 10
花瓶 50 2
10 1
油画 90 9
  """
  贪婪法:在对问题求解时,总是做出在当前看来是最好的选择,不追求最优解,快速找到满意解。
  输入:
  20 6
  电脑 200 20
  收音机 20 4
  钟 175 10
  花瓶 50 2
  书 10 1
  油画 90 9
  """


class Thing(object):
    """物品"""

    def __init__(self, name, price, weight):
        self.name = name
        self.price = price
        self.weight = weight

    @property
    def value(self):
        """价格重量比"""
        return self.price / self.weight


def input_thing():
    """输入物品信息"""
    name_str, price_str, weight_str = input().split()
    return name_str, int(price_str), int(weight_str)


def main():
    """主函数"""
    max_weight, num_of_things = map(int, input().split())
    all_things = []
    for _ in range(num_of_things):
        all_things.append(Thing(*input_thing()))
    all_things.sort(key=lambda x: x.value, reverse=True)
    total_weight = 0
    total_price = 0
    for thing in all_things:
        if total_weight + thing.weight <= max_weight:
            print(f'小偷拿走了{thing.name}')
            total_weight += thing.weight
            total_price += thing.price
    print(f'总价值: {total_price}美元')


if __name__ == '__main__':
    main()

分治法例子:快速排序

  """
  快速排序 - 选择枢轴对元素进行划分,左边都比枢轴小右边都比枢轴大
  """


def quick_sort(origin_items, comp=lambda x, y: x <= y):
    items = origin_items[:]
    _quick_sort(items, 0, len(items) - 1, comp)
    return items


def _quick_sort(items, start, end, comp):
    if start < end:
        pos = _partition(items, start, end, comp)
        _quick_sort(items, start, pos - 1, comp)
        _quick_sort(items, pos + 1, end, comp)


def _partition(items, start, end, comp):
    pivot = items[end]
    i = start - 1
    for j in range(start, end):
        if comp(items[j], pivot):
            i += 1
            items[i], items[j] = items[j], items[i]
    items[i + 1], items[end] = items[end], items[i + 1]
    return i + 1

回溯法例子:骑士巡逻

  """
  递归回溯法:叫称为试探法,按选优条件向前搜索,当搜索到某一步,发现原先选择并不优或达不到目标时,就退回一步重新选择,比较经典的问题包括骑士巡逻、八皇后和迷宫寻路等。
  """
import sys
import time

SIZE = 5
total = 0


def print_board(board):
    for row in board:
        for col in row:
            print(str(col).center(4), end='')
        print()


def patrol(board, row, col, step=1):
    if row >= 0 and row < SIZE and
        col >= 0 and col < SIZE and
        board[row][col] == 0:
    board[row][col] = step
    if step == SIZE * SIZE:
        global total
        total += 1
        print(f'第{total}种走法: ')
        print_board(board)
    patrol(board, row - 2, col - 1, step + 1)
    patrol(board, row - 1, col - 2, step + 1)
    patrol(board, row + 1, col - 2, step + 1)
    patrol(board, row + 2, col - 1, step + 1)
    patrol(board, row + 2, col + 1, step + 1)
    patrol(board, row + 1, col + 2, step + 1)
    patrol(board, row - 1, col + 2, step + 1)
    patrol(board, row - 2, col + 1, step + 1)
    board[row][col] = 0


def main():
    board = [[0] * SIZE for _ in range(SIZE)]
    patrol(board, SIZE - 1, SIZE - 1)


if __name__ == '__main__':
    main()

动态规划例子1:斐波拉切数列。(不使用动态规划将会是几何级数复杂度)

  """
  动态规划 - 适用于有重叠子问题和最优子结构性质的问题
  使用动态规划方法所耗时间往往远少于朴素解法(用空间换取时间)
  """


def fib(num, temp={}):
    """用递归计算Fibonacci数"""
    if num in (1, 2):
        return 1
    try:
        return temp[num]
    except KeyError:
        temp[num] = fib(num - 1) + fib(num - 2)
        return temp[num]

动态规划例子2:子列表元素之和的最大值。(使用动态规划可以避免二重循环)

说明:子列表指的是列表中索引(下标)连续的元素构成的列表;列表中的元素是int类型,可能包含正整数、0、负整数;程序输入列表中的元素,输出子列表元素求和的最大值,例如:

输入:1 -2 3 5 -3 2

输出:8

输入:0 -2 3 5 -1 2

输出:9

输入:-9 -2 -3 -5 -3

输出:-2

  def main():
    items = list(map(int, input().split()))
    size = len(items)
    overall, partial = {}, {}
    overall[size - 1] = partial[size - 1] = items[size - 1]
    for i in range(size - 2, -1, -1):
        partial[i] = max(items[i], partial[i + 1] + items[i])
        overall[i] = max(partial[i], overall[i + 1])
    print(overall[0])


if __name__ == '__main__':
    main()

results matching ""

    No results matching ""